United States Patent

US009454658B2

(12) (10) Patent No.: US 9,454,658 B2
Hentunen 45) Date of Patent: Sep. 27,2016
(54) MALWARE DETECTION USING FEATURE 8,151,352 B1* 4/2012 Novitchi ...ccoooovvrirnnrncs 726/24
ANALYSIS 8,250,655 B1* 82012 Malanov et al. 726/24
2003/0065926 Al* 4/2003 Schultz et al. 713/188
(75) Inventor: Daavid Hentunen, Helsinki (FI) 2003/0162575 Al* 82003 Morota et al. 455/575
’ 2004/0199594 Al* 10/2004 Radatti et al. 709/206
: R . 2008/0016568 Al* 1/2008 Szoretal. ... 726/22
(73) Assignee: F-Secure Corporation, Espoo (FI) 5009/0187992 AL 72009 Post 64
oston
i I 2009/0288141 Al* 11/2009 Khachaturov .. 726/3
(*) Notice: Subject o any disclaimer, the term of this 2007 (285141 A1 12009 Khachaturoy o e
patent is extended or adjusted under 35
U.S.C. 154(b) by 110 days. * cited by examiner
(21) Appl. No.: 12/928,531
Primary Examiner — Amir Mehrmanesh
. o4
(22) Filed: Dec. 14, 2010 (74) Attorney, Agent, or Firm — Harrington & Smith
(65) Prior Publication Data
US 2012/0151586 Al Jun. 14, 2012 7 ABSTRACT
(51) Int.CL A method of identifying sections of code that can be
GO6F 11/00 (2006.01) disregarded when detecting features that are characteristic of
GO6F 21/56 (2013.01) malware, which features are subsequently used for detecting
(52) U.S.CL malware. The method includes, for each of a multiplicity of
CPC . GO6F 21/563 (2013.01) sample files, subdividing file code of the sample file into a
(58) Field of Classification Search plurality of code blocks and then removing duplicate code
CPC .. GO6F 21/563; GO6F 21/552; GO6F 21/564; blocks to leave a sequence of unique code blocks. The
GOGF 8/71; GOGF 21/55; GOGF 8/73 sequence of unique code blocks is then compared with those
USPC oo 726/22-24; 713/187-188 obtained for other sample files in order to identify standard
See application file for complete search history. sections of code. The standard sections of code identified are
then included within a database such that those sections of
(56) References Cited

U.S. PATENT DOCUMENTS

code can subsequently be disregarded when identifying
features characteristic of malware.

7,234,167 B2* 6/2007 Teblyashkin et al. 726/24
7,398,553 Bl* 7/2008 Li .o, 726/22 11 Claims, 9 Drawing Sheets
Calc.exe
Line | Sequence Count

OONOOO HWN -
P> P»P>>0
OOO0O00O0O00
whwiviwlwiwiw)
mmmmm™mm
mmmm ™
nRoNON

oo

ol

]

—h o DAY GO O D W

U.S. Patent Sep. 27, 2016 Sheet 1 of 9 US 9,454,658 B2

et AV, Fust sample /
Figure 1a

A

A2 Subdivide
sample flacode (&
into code blocks

A3. Convert each
oode block into 3
crcB4 value

AS. Further
crcB4 walue in

hexadecimal form Y W
and remove any
duplicates

A

ADS. Create
l\\ sequence table

_ v

)

l

|

|

l‘_____

1

|

t

i

AT. Identify
number of times
each sequence in
the new seguence
table appears in

the already
crasted sequenoe

iads), and
update the count
numbers in each
sequence table

A

AB. Repeat steps
A8 and AT for all
code samples in
the sample set

U.S. Patent Sep. 27, 2016 Sheet 2 of 9 US 9,454,658 B2

B1. First Seq i
st Sequence Figure 1b

Sequence Tables
for sample set

B2. Use count
numbers to detect
boundaries *
between sections
of code

B4. Next Sequence
\Table
9

B3. Add standard
sections of code to
code sequence
database

Code sequence database

U.S. Patent Sep. 27, 2016 Sheet 3 of 9 US 9,454,658 B2

Start of execution

T 2 [push 0x70
3 B Cxor ebx.ebx
[Cpush ebx
[emp word ptrieax], Ox5A4D
PR Eime loc A
— [mov ecx, [ebx]
] [_add ecx.eax
Cpop ebx
__________ _ L [Cret

Figure 2

US 9,454,658 B2

Sheet 4 of 9

Sep. 27, 2016

U.S. Patent

Notepad.exe

Count

B e . 2 =

Sequence

[
[l o B

gl &

COVO

(VI T VI W T

L. LW W W
aNajalajajalal
NO0OO0VLOOLOO
O LI

Line

- NS OO MN’DOM

Figure 3

Calc.exe

Count

Uil adit el ol il 2l e ol 2

Sequence

_.......

(. 4

o]

QOO0

L b U Lo Lo

W W whwww
afajafajalala)
OVLVLLVLLOLO
DL <<

Line

=N DOMNO®M

Figure 4

US 9,454,658 B2

Sheet 5 of 9

Sep. 27, 2016

U.S. Patent

Calc.exe

Count

NN NN ONNN

Sequence

-
4

-ad

QOOO

W VR Wiy ¥ Sy T8

W Wwwww
aYaNaNalala)s
DOVOLOOO
DL L L L

Line

- ONMOTWHONOD

Notepad.exe

Count

SO N NN NN e v

Tl

b Q.

b Q.

COOVO

Wy ¥ ey Wy iy Y

L W) WLl
aNalalalalalel
DOVLVLOLOLVOLL
O L L L L

Line | Sequence

- ONMTHONOD

Figure 6

Figure 5

paint.exe

Count

- g g g g g g g g

Sequence

N
> >
X X X

=E=ZEZ2

E o d

T YTV MY ™

(TR TR TR T T TR T

(TR TIRTERV AR NI VAN in)
afalalaRalalaNala]
QLVOLOLLOLOO
O LA LCLLL L

Line

(=
— -

“ NN OO

Figure 7

US 9,454,658 B2

Sheet 6 of 9

Sep. 27, 2016

U.S. Patent

Calc.exe

Count

DM M NN ™~

Sequence

[
- 0

- C

(VEGROLRG
ol

W wwww
afajajajainlal
DLVOLOVLLOLO
DL L

Line

= NNTHOM~MOD

Notepad.exe

Count

DM MDA N~ -

T

- o

b= Qu o

OO0

(TR TR TR TR TS
Wwowwwww
aNalalalalale]
DQOVOVOLOLLOLO
gL LCLL <L

Line | Sequence

NN WSO

Figure 9

Figure 8

paint.exe

Count

MMM ™ o= v —

Sequence

~N

> o

xX X X

===

- P [|
AT TR Y™

W Iy ¥ Ty W Ty Wy U

Lo LU L L L LW
alolalinlafalaNals
(NGNS IGNONSNGRONONS]
O LL L L

Line

2 e~
e NMTUONMNO D e v

Figure 10

U.S. Patent

Sep. 27, 2016 Sheet 7 of 9
Notepad.exe
Line | Sequence Count
1 D 50
2 AD 50
3 ACD 50
4 ACDF 50
5 ACDEF 50
6 ACDEFG 15
7 ACDEFGT 15
8 ACDEFGPT 1
9 ACDEFGLPT |1
Figure 11

Line | Sequence Count
1 D 50
2 AD 50
3 ACD 50
4 ACDEF 35
5 ACDEF 50
6 ACDEFG 15
7 ACDEFGT 15
8 ACDEFGPT 1
9 ACDEFGLPT |1

Figure 12

US 9,454,658 B2

U.S. Patent Sep. 27, 2016 Sheet 8 of 9 US 9,454,658 B2

L
L
i
I

C1. Subdivide file
code into code
blocks

—

C2. Remove
duplicate cade
blocks

-
|

—

C3. dentify
standard sections
of code by
comparing
sequence of
unique code

blocks with those
abtained for other L
sample files. iy

2
C4. Include any -

identified standard
sections of code Database
within a database

Figure 13

U.S. Patent

Sep. 27, 2016

Sheet 9 of 9

Malware sample

l

D1. identify
sections of
malware sample
code that match
with enfries in a
database of known
and trusted
sections of code.

‘

D2. Execute
malware sample
code in sandbox,

and detect
execution features

h 4

D3. Reject
features resutting
from sections of
code identified in
D2.

l

D4. Use remaining
features, or a
subset thereof, to
detect malware

Database

Figure 14

US 9,454,658 B2

US 9,454,658 B2

1
MALWARE DETECTION USING FEATURE
ANALYSIS

TECHNICAL FIELD

The present invention relates to malware detection using
feature analysis. More particularly, the invention relates to a
method for allowing the elimination of features that are
likely to result in false positives during malware scanning
using a feature analysis approach.

BACKGROUND

The term “malware” is short for malicious software and is
used to refer to any software designed to infiltrate or damage
a computer system without the owner’s informed consent.
Malware can include viruses, worms, trojan horses, rootkits,
adware, spyware and any other malicious and unwanted
software. Many computer devices, such as desktop personal
computers (PCs), laptops, personal data assistants (PDAs)
and mobile phones, can be at risk from malware.

Detecting malware is often challenging, as malware may
be designed to be difficult to detect, often employing tech-
nologies that deliberately hide the presence of malware on a
system. For example a malware application may not show
up on the operating system tables that list currently-running
processes on a computer.

An anti-virus application for detecting viruses and other
malware may make use of various methods to detect mal-
ware including file scanning, integrity checking and heuris-
tic analysis. During file scanning, the anti-virus application
examines files for the presence of virus fingerprints or
“signatures” (i.e. code sequences) that are characteristic of
known malware. Typically, this requires that the anti-virus
application make use of a database containing the signatures
pushed to it, for example from an Internet based server. An
example of a heuristic analysis detection approach involves
collecting features arising during execution of a code
sample. Examples of features that may be collected during
execution are stacks, heaps, strings, API calls and their
parameters. Due to the malicious nature of the software
being searched for, execution cannot be performed live on a
computer device, so instead the execution takes place in a
sandbox environment. A sandbox is a virtual environment
that has a very tightly-controlled set of resources. This
allows unknown or untrusted software to be executed in
such a way that any malicious activity does not affect the
computer device on which it is being executed. The software
is executed within the sandbox, and features of the execution
of the file code as described above are collected and ana-
lysed to detect the existence of malware. Analysis may
involve comparing the detected features against features
previously identified by analysing known malware (that
analysis being done at a back end server of the anti-virus
application provider).

When trying to detect malware, it is important to avoid
false positives as much as possible. A false positive is
returned when the anti-virus application identifies software
as being suspected malware, when in fact it is not. False
positives create inconvenience and product dissatisfaction
for users, who only want the anti-virus application to detect
genuine malware, and are also undesirable from the point of
view of the anti-virus application providers as they result in
increased workload arising from customer queries and com-
plaints.

10

15

20

25

30

40

45

50

55

60

65

2

A method for reducing false positives might be as follows:

1) scan a sample set of clean files and collect all features,
counting each unique feature only once and ignoring
duplicates;

ii) scan a set of malware files and collect all features,
counting each unique feature only once and ignoring
duplicates;

iii) remove the features found in the set of clean files from
those found in the malware files;

iv) determine the most common feature that is found in
the set of malware files;

v) if the most common feature within the set of malware
files is present in more than a certain pre-defined
number of files, then that feature can be saved to a
database as being suitable for generic detection of
malware, and the files in which that feature is found are
removed from the inspected set of malware files;

vi) repeat from step iv) looking at the most common
feature found in the remaining files in the set of
malware files until a minimum feature count is reached,
and ignore all further features.

The features recorded on the database are identified as
being characteristic of that malware sample, and are there-
fore distributed to clients running the anti-virus application.

Despite such efforts to eliminate features likely to give
rise to false positives, there remains a high risk of features
being selected that are unsuitable for malware detection. The
empirical nature of the feature rejection process also gives
rise to a lack of confidence in the chosen features. It is
possible of course to use the created database of features to
scan a further selection of known clean files, and then
remove any features from the database that identify any of
the known clean files as malware. However this process can
take a considerable amount of time, and still does not
provide any certainty that all the features are suitable.

SUMMARY

It is an object of the present invention to improve the
confidence of a feature analysis-based approach to malware
detection. This may be achieved by analysing a possibly
large number of collected samples of code and identifying
standard sections of code that should be ignored when
analysing features during execution of a code sample.

According to a first aspect of the invention, there is
provided a method of identifying sections of code that can
be disregarded when detecting features’ that are character-
istic of malware, which features are subsequently used for
detecting malware. The method first comprises, for each of
a multiplicity of sample files, subdividing file code of the file
into a plurality of code blocks. Duplicate code blocks are
then removed to leave a sequence of unique code blocks.
The sequence of unique code blocks is then compared with
those obtained for other sample files in order to identify
standard sections of code. The standard sections of code
identified in the comparison are then included in a database
such that those sections of code can subsequently be disre-
garded when identifying features characteristic of malware.

Embodiments of the present invention may provide a
method that allows the elimination of features that are likely
to result in false positives during malware scanning using a
feature analysis approach. Embodiments of the present
invention may also provide a faster method of scanning a
computer for malware, and which may require less process-
ing power than conventional scanning methods.

The step of subdividing file code into a plurality of code
blocks may comprise subdividing the file code into blocks of

US 9,454,658 B2

3

one or more instructions, generating a signature for the
instruction block, and using that signature as the code block.
This signature may be a cyclic redundancy check value, and
instruction parameters may be removed from an instruction
block before generating a signature.

The step of comparing the sequence of unique code
blocks with those obtained for other sample files in order to
identify standard sections of code may comprise creating a
sequence table for the file, a first row of the table including
the first code block of the sequence of unique code blocks
and each subsequent line adding on the next code block in
the sequence, the code blocks within each row being reor-
dered according to a predefined sorting procedure; and
searching sequence tables of other files for matching rows.

For each row in the sequence table, a count number may
be included that indicates the number of times an identical
row is found in the sequence tables for the other sample files.

The step of identifying standard sections of code may
comprise detecting distinct boundaries in the count numbers
within a sequence table, and may further comprise ignoring
false positive drops in the count numbers.

The standard sections of code may be associated with one
or more packers or compilers.

According to a second aspect of the invention, there is
provided a method of identifying features that are charac-
teristic of a malware sample, which features are subse-
quently used for detecting malware. The method first com-
prises identifying sections of malware sample code that
match with entries in a database of known and trusted
sections of code. The malware sample code is then executed
in a sandbox and execution features are detected. Those
features resulting from execution of the identified sections
are rejected, and the remaining features, or a subset of those
remaining features, are utilised to detect malware.

Said database of known and trusted sections of code may
be constructed using the method of the first aspect of the
invention described above.

According to a third aspect of the invention, there is
provided a program which, when run on a computer, causes
it to identify sections of code that can be disregarded when
detecting features that are characteristic of malware, which
features are subsequently used for detecting malware. For
each of'a multiplicity of sample files, the program causes the
computer to subdivide file code of the file into a plurality of
code blocks. The program then causes the computer to
remove duplicate code blocks to leave a sequence of unique
code blocks, then compare the sequence of unique code
blocks with those obtained for other sample files in order to
identify standard sections of code. The program then causes
the computer to include any identified standard sections of
code within a database such that those sections of code can
subsequently be disregarded when identifying features char-
acteristic of malware.

According to a fourth aspect of the invention, there is
provided a program which, when run on a computer, causes
it to identify features that are characteristic of a malware
sample, which features are subsequently used for detecting
malware. The program causes the computer to identify
sections of malware sample code that match with entries in
a database of known and trusted sections of code. The
program then causes the computer to execute the malware
sample code in a sandbox and detect execution features, and
then reject those features resulting from execution of the
identified sections. The remaining features, or a subset of
those remaining features, are then utilised to detect malware.

According to a fifth aspect of the invention, there is
provided a computer configured to identify sections of code

10

15

20

25

30

35

40

45

50

55

60

65

4

that can be disregarded when detecting features that are
characteristic of malware, which features are subsequently
used for detecting malware. The computer is configured, for
each of a multiplicity of sample files, to subdivide file code
of the file into a plurality of code blocks. The computer is
configured to then remove duplicate code blocks to leave a
sequence of unique code blocks, and then compare the
sequence of unique code blocks with those obtained for
other sample files in order to identify standard sections of
code. The computer is further configured to then include any
identified standard sections of code within a database such
that those sections of code can subsequently be disregarded
when identifying features characteristic of malware.

According to a fifth aspect of the invention, there is
provided a computer configured to identify features that are
characteristic of a malware sample, which features are
subsequently used for detecting malware. The computer is
configured to identify sections of malware sample code that
match with entries in a database of known and trusted
sections of code. The computer is then configured to execute
the malware sample code in a sandbox and detect execution
features, and then reject those features resulting from execu-
tion of the identified sections. The computer is then config-
ured to utilise the remaining features, or a subset of those
remaining features, to detect malware.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a and 15 are a flow diagrams showing two parts
of a procedure for identifying standard and trusted code
sections;

FIG. 2 shows an example of an instruction set in a section
of file code, indicating possible code block sizes;

FIGS. 3 and 4 show code block sequence tables for
respective different samples;

FIGS. 5 and 6 show respectively the sequence tables of
FIGS. 3 and 4 updated following comparison with one
another;

FIG. 7 shows a code block sequence table for a further,
different sample;

FIGS. 8 and 9 show respectively the sequence tables of
FIGS. 5 and 6 updated following comparison with the
sequence table of FIG. 7;

FIG. 10 shows the sequence table of FIG. 7 updated
following comparison with the sequence tables of FIGS. 5
and 6;

FIG. 11 shows the sequence table of FIG. 8 updated
following comparison with the sequence tables of a multi-
plicity of further, different samples;

FIG. 12 shows a sequence table containing a count
number fluctuation;

FIG. 13 is a flow diagram showing a method for identi-
fying standard sections of code according to an alternative
embodiment; and

FIG. 14 is a flow diagram showing a method of identi-
fying features that are characteristic of a malware sample,
which features can subsequently be used for detecting
malware.

DETAILED DESCRIPTION

As discussed above, current anti-virus detection tech-
niques can return false positives which create inconvenience
and product dissatisfaction for users, and increased work-
load for the anti-virus application provider. This problem of
false positives being returned can arise in particular due to
the initial selection and distribution (to clients) of features

US 9,454,658 B2

5

that are common to both clean files and malware and the
failure to eliminate these during any subsequent screening
process.

An approach will now be described that can be used to
greatly reduce the number of unsuitable features that are
selected for malware detection, and therefore to reduce the
number of false positives. The approach involves creating a
database of code sequences that are found at the start of file
code and that can be disregarded or ignored when perform-
ing malware detection techniques, in particular heuristic
analysis such as feature analysis. Typically, the procedures
are carried out at a backend server or servers operated by a
provider of an anti-virus application, and where the anti-
virus application itself is run on client computers (“clients”)
that subscribe to the application. Once collected, a feature
set for a particular malware sample is pushed out to the
clients via the Internet.

File code can be seen as comprising a number of sections
of' code which correspond to the processes carried out during
execution of the code. For example, prior to the author-
written section of code (that is, for example, a specifically
written piece of code that actually performs the malicious
operations) there can be a section of code that corresponds
to a compiler. A compiler is a computer program that
transforms code written in a programming language into
another computer language, for example creating an execut-
able file (e.g. in a binary form) from the file code. A compiler
may provide multiple compiling options, to optimise the
code for either speed or size. There are a number of
commonly used compilers. Prior to the compiler section of
code there may also be one or a number of further sections
of code which correspond to packers, protectors and/or
obfuscators. There are a number of commonly used packers
that are available for packing code, for example the UPX
packer. Generally, packers provide compression to reduce
the size of files. However some packers provide protection
and/or obfuscation for the code. These obfuscating packers
are often used for nefarious reasons in malware but are also
used in legitimate software to protect the code from being
reverse engineered.

With a number of common packers and compilers being
available, it is unlikely that new compilers and/or packers
will be created each time a new piece of software or malware
is written. This leads to similar initial sections of code being
found in file code, whether it be code for legitimate software
or malware. These initial sections of code (corresponding to
compilers, packers, etc) can be thought of as “standard”
sections of code that are executed before the execution of the
author-written section of code.

FIGS. 1a and 15 are flow diagrams that illustrate a
two-part method of identifying standard sections of code by
analysing a large database of trusted samples (and possibly
malware files). Referring firstly to FIG. 1a, the steps of the
method are:

Al. Take a first sample from a sample set.

A2. Subdivide the sample file code into code blocks.

A3. Convert each code block into a crc64 value (i.e. a 64
bit cyclic redundancy check value).

A4. Re-write each crc64 value in hexadecimal form and
remove any duplicates, i.e. so that only unique hexa-
decimal blocks remain.

AS. Create a sequence table for the sample, with the next
hexadecimal block in the execution sequence being
added to each new line, and with each line being
arranged in numerical order and having an associated
count number of 1.

15

20

25

30

40

45

50

55

6

A6. Repeat steps A2 to AS for a further sample from the
sample set.

A7. Identify the number of times each sequence in the
new sequence table appears in the already created
sequence table, and update the count numbers in the
new sequence table.

AS8. Repeat steps A6 and A7 for each further sample in the
sample set, considering at step A7 all of the already
created sequence tables when updating the new
sequence table.

Once a sequence table has been created for each sample
in the sample set, the method proceeds to the second part as
shown in FIG. 1b:

B1. Take a first sequence table for a sample in the sample

set.

B2. Use the count numbers in the sequence table to detect
any boundaries between sections of code within a
sample, and use boundaries to identify standard code
sections.

B3. Add any identified standard sections of code (in the
original order and with duplicates reintroduced) to a
code sequence database.

B4. Repeat steps B2 to B3 for all sequence tables for the
samples in the sample set in order to construct complete
standard code section database.

The method can be further illustrated by considering a
specific example. Assume that at step Al the first sample
selected is a file “notepad.exe” that is packed with UPX and
compiled by a compiler A. In step A2, the sample file code
is subdivided into code blocks. The size of the code blocks
can be on an instruction level, a basic block level, or on a
functional level. FIG. 2 shows an example of an instruction
set in a section of file code. The four different sets of
brackets on the left that separate the instructions indicate
possible code block sizes as set out below:

1) instruction level

ii) basic block level 1

iii) basic block level 2

iv) whole function level

Two basic block levels are shown in ii) and iii). The size
of a basic block level may vary according to the execution
process. For example, different ways in which the code is
executed at a branch instruction may produce different basic
block level sizes. Alternatively a basic block level size may
be set to a pre-determined number of instructions, irrespec-
tive of execution process. This value may for example be in
the range of 15 to 50.

Once the file code has been broken up into code blocks,
each code block is converted into a crc64 value, as indicated
in step A3. In order to be able to use these code blocks to
compare with code blocks in other sample files, only the
instruction type is used when creating the crc64 value and
not the instruction values as well. This is exemplified in the
tables below, which show a code block for two different
applications that have been compiled by the same compiler,
A:

Application 1 6A 70

Compiled with A

push 0x70
xor ebx,ebx 33 DB

cmp word ptrleax], 0x5A4D 66 81 38 4D 5A
crc64(6A 70 33 DB 66 81 38 4D 5A) =X

push 0x33 6A 33

xor ebx,ebx 33 DB

cmp word ptrleax], 0xFF23 66 81 38 FF 23
crc64(6A 33 33 DB 66 81 38 FF 23) =Y

Application 2
Compiled with A

US 9,454,658 B2

7 8
From the two tables above, it is clear that the two crc64 sequences in the existing tables (for notepad.exe and cal-
values X and Y are different, X=Y. If, however, only the c.exe), the updated table shown in FIG. 10 is created. [FIGS.
instruction types are used as indicated in the table below, 8 and 9 show the updated tables for notepad.exe and calc.exe
there is a different outcome: taking into account the sequences contained in paint.exe.]

5 The method repeats until sequence tables have been

created for each sample within the sample set. FIG. 11 shows
Instruction Instruction type what the notepad.exe sample sequence table might look like
once the first part of the method has been completed and all

push <immediate value> BE EF

xor ebx.ebx CA FE samples (e.g. several thousand samples) hgve been analysed.
cmp word ptifeax], FA CE 10 In some instances, the count numbers in a sequence table
<immediate value> may contain “fluctuations” or “false positive drops”. FIG. 12

shows an example of a sequence table with a false positive

Application 1 cre64 value becomes: cre64(BE EF CA FE FA drop between lines 3 and 4. False positive drops such as this
CE)-Z can be caused by a section of code being executed in a

Application 2 crc64 value becomes: crc64(BE EF CAFE FA > fhfferent order. Eor example, A section Of codg correspond-
= ing to Packer A in Sample X is executed in a different order
CE)=Z . .
N hat 77 to the section of code corresponding to Packer A for Sample
OW We can see that Z=2. Y. These false positive drops are handled by ignoring
At this point, the sample notepad.exe file code has been

: E sequences that have longer corresponding sequences with
converted into a long string of crc64 values. In order to be ,, higher count numbers. For example, in FIG. 12, the

—

manageable, in step A4 each crc64 value is converted into a sequence in line 4 with count number 35 (A C D F) is
sixteen figure hexadecimal representation. For simplicity, in ignored, as line 5 shows a longer corresponding sequence (A
this example, letters shall be used to represent these hexa- C D E F) with a higher count number of 50.
decimals, e.g. the symbol “A” represents the hexadecimal Considering further the second part of the method illus-
value “1122334455667788”. Using this simplified nomen- 25 trated in FIG. 15, step Bl takes a first sequence table as
clature, the notepad.exe sample can be represented by the created in the first part of the method. For example, the
following sequence of code blocks: notepad.exe table of FIG. 11. In step B2, the count numbers
DDDACFEFEGDTPLA in the sequence table are used to detect boundaries between
Removing the duplicates will leave: sections of code within the sample. In FIG. 11, two clear
DACFEGTPL 30 boundaries are shown. Rows 1 to 5 of the sequence table
The next stage, indicated by step AS, is to create a match with 50 other files in the sample set, rows 6 and 7
sequence table for the sample. A new line is added for each match with 15 other files in the sample set, and rows 8 and
code block. In addition, the hexadecimal representations are 9 are unique within the sample set. With reference to the
re-ordered within each line in numerical order (shown below original block sequence, i.e. before the removal of duplicates
as alphabetical order for ease of illustration). Following the 35 and the reordering (namely DD DACFEFEGDTPL
example above, the notepad.exe sample would return a A), the boundaries appearing in the sequence table suggests
sequence table as shown in FIG. 3. As this is the first sample that the sequences prior to blocks G and P are common code
taken from the sample group, there are no other sequence sequences, and the sequence including block P and beyond
tables to compare this with, and the count numbers will is the author written code, i.e.:
remain as 1 for all sequences in the table. 490 DDDACFEFE*GDT*PLA
In step A6, a second sample is taken. For example, the where ** indicates start of the compiler section of code and
second sample may be “calc.exe” which has also been * indicates the start of the author-written code. In step B3,
compiled by compiler A and packed by UPX. Steps A2 to AS the identified standard sections of code are then entered into
are repeated, and the calc.exe sample is re-written as: a code sequence database,ie. DD DACFEFE, and D
DACDACFEDACFEGDTCQR 45 DDACFEFEGDT. In step B4, the process is repeated
Removing the duplicates will leave: for each sequence table for the samples in the sample set.
DACFEGTQR The flow diagram of FIG. 13 illustrates a generic method
Continuing the method, in step A7, the sequence table for for identifying sections of code that can be disregarded when
calc.exe is created, which is shown in FIG. 4. There are now detecting features that are characteristic of malware, which
two sequence tables that can be compared, and on compari- 50 features are subsequently used for detecting malware. The
son it is clear that lines 1 to 7 are identical, so in step A7 the method comprises, for each of a multiplicity of sample files
count numbers in both sequence tables are updated as shown 1:
in FIGS. 5 and 6. C1. Subdividing file code of the sample file into a
After creating the sequence table for the second sample plurality of code blocks.
(and having updated the sequence table for the first sample), 55 C2. Removing duplicate code blocks to leave a sequence
step A8 is reached. A third sample is taken (step A6) and of unique code blocks.
steps A2 to A7 repeated. For example, a third sample might C3. Comparing the sequence of unique code blocks with
be “paint.exe” that is packed with UPX, but is compiled with those obtained for other sample files in order to identify
compiler B rather than compiler A. The hexadecimal standard sections of code.
sequence (again using the simplified alphabetic representa- 60 C4. Including any identified standard sections of code
tion for the sixteen digit hexadecimal values) for this sample within a database 2 such that those sections of code can
is: subsequently be disregarded when identifying features
DAADCCAFDEAEIJMLXYZ characteristic of malware.
Removing the duplicates will leave: The code sequence database that is created using the
DACFEIMLXYZ 65 method of FIGS. 1a and 15, or the database 2 of FIG. 13, can
This provides an initial sequence table as shown in FIG. then be used to generate features characteristic of malware

7. When the sequences in this table are compared to the files. FIG. 14 shows a flow diagram that outlines a method

US 9,454,658 B2

9

of identifying features that are characteristic of a malware
sample, which features can subsequently be used for detect-
ing malware. The method comprises, for a malware sample
3:

D1. Identifying sections of malware sample code that
match with entries in a database of known and trusted
sections of code.

D2. Executing the malware sample code in a sandbox and
detecting execution features.

D3. Rejecting those features resulting from execution of
the identified sections.

D4. Utilising the remaining features, or a subset of those
remaining features to detect malware.

The processes described here may be carried at a backend
server operated by an anti-virus application provider. This
provider will typically identify, using an automated and/or
manual checking process, malware collected from the
“wild”, e.g. by scanning the web or collecting samples
submitted by clients. In order to generate a feature set that
can be pushed to clients and subsequently used (by the
clients) to recognise the malware and its variants, the
detected malware file is first analysed in step D1 to see if it
contains any sections of code that match an entry in the code
sequence database, e.g. the sequences DD DACFEFE
orDDDACFEFE GDT considered above. If it does,
then the longest identified code sequence (starting from the
beginning of the malware code) is flagged. In step D2, the
malware is then executed in a sandbox and features are
extracted together with an execution timeline. In a post-
execution phase, as indicated in step D3, those features
occurring as a result of execution of the flagged code section
are identified and removed from the extracted feature set.
The features remaining in the feature set provide a feature
set for detecting the malware and its variants, regardless of
alternative packers and compilers that might be used. As
described, this feature set is then pushed as an anti-virus
application update to the subscribing clients. In step D4,
when scanning files, the clients perform sandbox execution
and look to identify the presence of the feature set in the
resulting features. Other features, e.g. arising from compil-
ers and packers, are ignored.

As well as searching for standard code sections starting
from the beginning of the malware file, the malware feature
identification procedure might involve identifying interme-
diate sections of code within a malware file that can be
ignored when selecting features that characterise the mal-
ware.

It will be appreciated by the person of skill in the art that
various modifications may be made to the above described
methods without departing from the scope of the present
invention.

The invention claimed is:

1. A method comprising:

for each of a plurality of sample files stored in at least one
computer readable memory,

1) subdividing file code of the sample file into a plurality
of code blocks each comprising one or more instruc-
tions, removing instruction parameters from each code
block, and generating a code block signature for each
code block;

2) removing duplicate code block signatures to leave a
sequence of unique code block signatures, comparing
the sequence of unique code block signatures obtained
for sample files in order to identify common sections of
code, wherein comparing the sequences of unique code
block signatures comprises: creating a sequence table
for the file, a first row of the table including the first

10

15

20

25

30

35

40

45

50

55

60

65

10

code block signature of the sequence of unique code
block signatures and each subsequent line adding on
the next code block signature in the sequence, the code
block signatures within each row being reordered
according to a predefined sorting procedure; and
searching sequence tables of other files for matching
rows; and

including any identified common sections of code within

a database, wherein inclusion of a common section of

code within the database indicates that features arising

from the execution of the common section of code

during a malware scan using a heuristic analysis of a

file are to be disregarded as features characteristic of

malware when generating a feature set to characterize
or identify the file as malware.

2. The method of claim 1, wherein said signature is a
cyclic redundancy check value.

3. The method of claim 1, further comprising including,
for each row in the sequence table, a count number that
indicates the number of times an identical row is found in the
sequence tables for the other sample files.

4. The method of claim 3, wherein identifying common
sections of code comprises detecting distinct boundaries in
the count numbers within a sequence table.

5. The method of claim 4, wherein detecting distinct
boundaries in the count numbers within a sequence table
comprises ignoring false positive drops in the count num-
bers.

6. The method of claim 1, wherein the common sections
of code are associated with one or more packers or compil-
ers.

7. A method comprising:

identifying sections of malware sample code that match

with entries in a database of known and trusted com-
mon sections of code, wherein inclusion of a common
section of code in the database indicates that the
common section of code is to be disregarded during
subsequent identification during a malware scan of
features characteristic of malware, and wherein said
database of known and trusted common sections of
code is constructed by, for each of a plurality of sample
files:

1) subdividing file code of the sample file into a
plurality of code blocks each comprising one or more
instructions, removing instruction parameters from
each code block, and generating a code block sig-
nature for each code block;

2) removing duplicate code block signatures to leave a
sequence of unique code block signatures, compar-
ing the sequences of unique code block signatures
obtained for the sample files in order to identify
common sections of code, wherein comparing the
sequences of unique code block signatures com-
prises: creating a sequence table for the file, a first
row of the table including the first code block
signature of the sequence of unique code block
signatures and each subsequent line adding on the
next code block signature in the sequence, the code
block signatures within each row being reordered
according to a predefined sorting procedure; and
searching sequence tables of other files for matching
rows; and

including any identified common sections of code within

the database;

executing the malware sample code in a sandbox and

detecting execution features;

US 9,454,658 B2

11

rejecting those features resulting from execution of the
identified sections; and
utilizing at least one of the remaining features to generate
a feature set for the identification of malware.
8. A computer readable memory storing a program which,
when run on a computer, causes the computer to at least:
for each of a multiplicity of sample files,

1) subdivide file code of the file into a plurality of code
blocks each comprising one or more instructions,
removing instruction parameters from each code block,
and generating a code block signature for each code
block;

2) remove duplicate code block signatures to leave a

sequence of unique code block signatures;

compare the sequences of unique code block signatures

obtained for the sample files in order to identify com-
mon sections of code, wherein comparing the
sequences of unique code block signatures comprises:
creating a sequence table for the file, a first row of the
table including the first code block signature of the
sequence of unique code block signatures and each
subsequent line adding on the next code block signature
in the sequence, the code block signatures within each
row being reordered according to a predefined sorting
procedure; and searching sequence tables of other files
for matching rows; and

include any identified common sections of code within a
database, wherein inclusion of a common section of
code within the database indicates that features arising
from the common section of code during a malware
scan using a heuristic analysis are to be disregarded as
features characteristic of malware when generating a
feature set to characterize or identify the file as mal-
ware.

9. A computer readable memory storing a program which,

when run on a computer, causes the computer to at least:

identify sections of malware sample code that match with
entries in a database of known and trusted common
sections of code, wherein inclusion of a common
section of code in the database indicates that the
common section of code is to be disregarded during
subsequent identification during a malware scan of
features characteristic of malware, and wherein said
database of known and trusted sections of code is
constructed by, for each of at least one sample file:

1) subdividing file code of the sample file into a
plurality of code blocks each comprising one or more
instructions, removing instruction parameters from
each code block, and generating a code block sig-
nature for each code block;

2) removing duplicate code block signatures to leave a
sequence of unique code block signatures;

comparing the sequences of unique code block signa-
tures obtained for the sample files in order to identify
standard sections of code, wherein comparing the
sequences of unique code block signatures com-
prises: creating a sequence table for the file, a first
row of the table including the first code block
signature of the sequence of unique code block
signatures and each subsequent line adding on the
next code block signature in the sequence, the code
block signatures within each row being reordered
according to a predefined sorting procedure; and
searching sequence tables of other files for matching
rows; and

including any identified common sections of code
within the database; execute the malware sample

10

20

25

30

35

40

45

50

55

60

65

12

code in a sandbox and detect execution features;
reject those features resulting from execution of the
identified sections; and utilize at least one of the
remaining features to generate a feature set for the
detection of malware.

10. A computer readable memory storing a program of

instructions, execution of which by at least one processor
configures an apparatus to at least:

for each of a plurality of sample files,

1) subdivide file code of the file into a plurality of code
blocks each comprising one or more instructions,
removing instruction parameters from each code block,
and generating a code block signature for each code
block;

2) remove duplicate code block signatures to leave a
sequence of unique code block signatures;

compare the sequences of unique code block signatures
obtained for the sample files in order to identify stan-
dard sections of code, wherein comparing the
sequences of unique code block signatures comprises:
creating a sequence table for the file, a first row of the
table including the first code block signature of the
sequence of unique code block signatures and each
subsequent line adding on the next code block signature
in the sequence, the code block signatures within each
row being reordered according to a predefined sorting
procedure; and searching sequence tables of other files
for matching rows; and

include any identified common sections of code within a
database, wherein the presence of a common section of
code within the database indicates that features arising
from execution of the common section of code during
a malware scan using a heuristic analysis of a file are
to be disregarded as features characteristic of malware
when generating a feature set to characterize or identity
the file as malware.

11. A computer readable memory storing a program of
instructions, execution of which by at least one processor
configures an apparatus to at least:

identify sections of malware sample code that match with
entries in a database of known and trusted common
sections of code, wherein inclusion of a common
section of code in the database indicates that the
common section of code is to be disregarded during an
identification during a malware scan of features char-
acteristic of malware, and wherein said database of
known and trusted common sections of code is con-
structed by, for each of a plurality of sample files:

1) subdividing file code of the sample file into a
plurality of code blocks each comprising one or more
instructions, removing instruction parameters from
each code block, and generating a code block sig-
nature for each code block;

2) removing duplicate code block signatures to leave a
sequence of unique code block signatures;

comparing the sequences of unique code block signa-
tures obtained for other sample files in order to
identify common sections of code, wherein compar-
ing the sequences of unique code block signatures
comprises: creating a sequence table for the file, a
first row of the table including the first code block
signature of the sequence of unique code block
signatures and each subsequent line adding on the
next code block signature in the sequence, the code
block signatures within each row being reordered

US 9,454,658 B2
13 14

according to a predefined sorting procedure; and
searching sequence tables of other files for matching
rows; and
including any identified common sections of code
within the database; 5
execute the malware sample code in a sandbox and
detecting execution features;
reject those features resulting from execution of the
identified sections; and
utilize at least one of the remaining features to generate a 10
feature set for the identification of malware.

#* #* #* #* #*

